NUMERICAL MODELING OF A MULTIBODY WEC USING CONSTRAINT EQUATIONS

KRISHNAKUMAR RAJAGOPALAN1, GÉRARD NIHOUS2, LUIS A. VEGA3, PATRICK CROSS4

1Corresponding author, Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI, USA, krishnak@hawaii.edu
2Ocean and Resources Engineering, University of Hawaii, Honolulu, HI, USA, nihous@hawaii.edu
3Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI, USA, luisvega@hawaii.edu
4Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI, USA, pscross@hawaii.edu

Hydrodynamic motion analysis of a multiple body Wave Energy Converter (WEC) [1], is modeled using WEC-Sim and an in-house code. The device consists of a spar and a float connected by a hinge. In WEC-Sim [2], which is a well-known WEC performance evaluation software, the connection between bodies that form the WEC device is modeled using Simulink/Simmechanics MATLAB toolbox. In this presentation we describe a method whereby connections between the bodies – in this case a hinge – is modeled by suitably modifying the equations of motion of the two bodies, using constraints imposed by the hinge.

The linear constraints described in Sun et.al [3] are incorporated in the equations of motion. For further improvement in realistic seas, the exact (and nonlinear) constraints are derived for the WEC device. An in-house code was setup using either the linear or nonlinear constraints to model the motion response of the device in regular seas. Results for motions from the in-house solver, which uses the modified equations of motion, are compared with those of WEC-Sim, in regular waves. It is shown that WEC-Sim follows the nonlinear constraints exactly, and the in-house code that uses the nonlinear constraints compares well with the WEC-Sim results.

ACKNOWLEDGEMENTS

We would like to acknowledge funds from the Naval Facilities Engineering Command (NAVFAC), via the Applied Research Laboratory at UH, for supporting this research.

REFERENCES

